Partial wave analysis for $K^+\Lambda$ and $K^+\Sigma^0$ photoproduction

Biplab Dey, Michael E. McCracken, Curtis A. Meyer

Carnegie Mellon University

May 17th, 2011 NSTAR'11, Jefferson Lab

Biplab Dey (CMU)

NSTAR'11, JLab

May 17th, 2011 1 / 25

- 4 同 2 4 日 2 4 日 2 - 日

- **1** INTRODUCTION, "COMPLETE" EXPERIMENTS AND POLARIZATIONS
- **2** Normalization issues
- **3** Preliminary PWA results: the non-resonant part
- PRELIMINARY PWA RESULTS: THE RESONANT PART
- 5 SUMMARY

OUTLINE

INTRODUCTION, "COMPLETE" EXPERIMENTS AND POLARIZATIONS

- **3** Preliminary PWA results: The non-resonant part
- PRELIMINARY PWA RESULTS: THE RESONANT PART

(人間) くちり くちり

 Fundamental question in hadronic physics – what are the relevant degrees of freedom in low/medium energy QCD?

- Fundamental question in hadronic physics what are the relevant degrees of freedom in low/medium energy QCD?
- Can we figure out the complex production amplitudes?

- Fundamental question in hadronic physics what are the relevant degrees of freedom in low/medium energy QCD?
- Can we figure out the complex production amplitudes?

NSTAR'11, JLab

- Fundamental question in hadronic physics what are the relevant degrees of freedom in low/medium energy QCD?
- Can we figure out the complex production amplitudes?

Polarization data, "complete" experiments

PSEUDOSCALAR-MESON PHOTOPRODUCTION

- 8 (2 × 2 × 2) $A_{m_{\gamma}m_im_b}$ complex amplitudes tagged by m_{γ} (photon), m_i (initial target) and m_b (outgoing baryon) spin projections
- Parity invariance reduces the 8 *A*'s to 4 *independent L_i* longitudinal basis amplitudes (a single spin-quantization axis along the longitudinal beam direction).

PSEUDOSCALAR-MESON PHOTOPRODUCTION

- 8 (2 × 2 × 2) $A_{m_{\gamma}m_im_b}$ complex amplitudes tagged by m_{γ} (photon), m_i (initial target) and m_b (outgoing baryon) spin projections
- Parity invariance reduces the 8 *A*'s to 4 *independent L_i* longitudinal basis amplitudes (a single spin-quantization axis along the longitudinal beam direction).

• Density matrix:
$$\rho = \frac{1}{2}(1 + \vec{P} \cdot \vec{\sigma}) \equiv \frac{P^{\mu}\sigma_{\mu}}{2}$$
, with $P_0 = 1$ and $\sigma_0 = \mathbb{I}$.

• Intensity profile has 64 (4 × 4 × 4) terms on expansion: $\mathcal{I} = \mathcal{I}_0 \left(\frac{\text{Tr}[\rho^b \mathcal{A} \rho^i \rho^{\gamma} \mathcal{A}^{\dagger}]}{\text{Tr}[\mathcal{A} \mathcal{A}^{\dagger}]/8} \right) = \mathcal{I}_0 \left(\sum_{\textit{Imn} \in \{0,1,2,3\}} P_l^{\gamma} P_m^i P_n^b \ T_{\textit{Imn}} \right)$

▲日▶ ▲□▶ ▲三▶ ▲三▶ 三日 りんの

The T_{lmn} elements and polarizations

• $T_{lmn} \equiv \frac{\text{Tr}[\sigma_n^b \mathcal{A} \sigma_m^i \sigma_l^\gamma \mathcal{A}^{\dagger}]}{\text{Tr}[\mathcal{A} \mathcal{A}^{\dagger}]}$ elements are the polarization observables.

- Parity on *T_{Imn}*: reshuffle the ordering of (*Imn*).
- Parity transform: out of 64 terms, 32 get killed and remaining 16 terms occur twice.
- Simply read off *T_{lmn}* from the table
 → compactness of notation and
 derivation!
- 15 independent polarization observables. FROST and g8 from CLAS will give many of these.

The T_{lmn} elements (*lmn*)

Туре	Observable	Definition	Parity flip
Unpolarized	1	(000)	(122)
Single-pol.	Р	(002)	(120)
"	Σ	(100)	(022)
"	Т	(020)	(102)
Beam-target	E	(330)	(212)
"	F	(310)	-(232)
"	G	-(230)	(312)
"	Н	-(210)	-(332)
Beam-recoil	C _x	(301)	(223)
"	Cz	(303)	-(221)
"	O _x	-(201)	(323)
"	O _z	-(203)	-(321)
Target-recoil	T _x	(011)	(133)
"	Tz	(013)	-(131)
"	L _x	(031)	-(113)
"	Lz	(033)	(111)

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ● ● ● ●

SIGN ISSUES - I

• Photon polarization \vec{P}^{γ} :

 $\begin{array}{lll} P_{z}^{\gamma} &=& P_{C}^{\gamma}(\textit{circular}) \\ P_{x}^{\gamma} &=& -P_{L}^{\gamma}\cos(2\phi)(\textit{linear}) \\ P_{y}^{\gamma} &=& -P_{L}^{\gamma}\sin(2\phi)(\textit{linear}) \end{array}$

- Linear case: $\phi = (\theta \varphi)$
 - Theory/PWA: ϕ
 - Experimentalists: φ
 - $\theta = 0$ "para" and $\theta = 90^{\circ}$ "perp" settings.

Looking "into" the beam-dirn. (\hat{z}) :

- While showing intensity profile, clarify whether azimuthal angle is ϕ or φ .
- Intensity profile for "para" / "perp" will carry totally different signs. Can lead to sign ambiguities.

Biplab Dey (CMU)

NSTAR'11, JLab

May 17th, 2011 6 / 25

イロト 不得 とうせい かほとう ほ

SIGN ISSUES - II

- CMU follows the *asymmetry definitions* in Fasano-Tabakin-Saghai (FTS) PRC 46, 2430 (1992).
- Caveat: FTS *density matrix* definitions for O_x , O_z , G and H (linear pol. photon) have incorrect signs.
- CMU \leftrightarrow SAID/MAID : flip signs of H, E, C_x, C_z, O_x, O_z and L_x .
- CMU \leftrightarrow EBAC : flip signs of *E*.
- To avoid sign issues, need to mention:
 - Which convention (CMU/SAID/EBAC) is being followed.
 - Which angle, ϕ or $\varphi,$ is being shown in the intensity profile.

▲日 ▶ ▲冊 ▶ ▲ 田 ▶ ▲ 田 ▶ ● ● ● ● ●

SIGN ISSUES - II

- CMU follows the *asymmetry definitions* in Fasano-Tabakin-Saghai (FTS) PRC 46, 2430 (1992).
- Caveat: FTS *density matrix* definitions for O_x , O_z , G and H (linear pol. photon) have incorrect signs.
- CMU \leftrightarrow SAID/MAID : flip signs of H, E, C_x, C_z, O_x, O_z and L_x .
- CMU \leftrightarrow EBAC : flip signs of *E*.
- To avoid sign issues, need to mention:
 - Which convention (CMU/SAID/EBAC) is being followed.
 - Which angle, ϕ or $\varphi,$ is being shown in the intensity profile.

Ref: B. Dey et al, arXiv:1010.4978 [hep-ph] (to be published in PRC)

OUTLINE

1 INTRODUCTION, "COMPLETE" EXPERIMENTS AND POLARIZATIONS

2 Normalization issues

3 Preliminary PWA results: the non-resonant part

4 PRELIMINARY PWA RESULTS: THE RESONANT PART

5 SUMMARY

THE NEW CLAS "G11A" PHOTOPRODUCTION RESULTS

- High-statistics (~ 20 billion triggers), precision (very well calibrated) experiment, originally for pentaquark search.
- Very fine $\Delta(\sqrt{s}) = 10$ MeV binning, wide kinematic coverage, till $\sqrt{s} = 2.84$ GeV
- First world dataset to "bridge" the low-energy regime ($\sqrt{s} \le 2.3 \text{ GeV}$) where most of the world data resides, and the older high-energy ($\sqrt{s} \ge 3 \text{ GeV}$) data from SLAC/DESY/CEA *et al.*
- Generally good to excellent agreement with lower energy LEPS/GRAAL data.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 ののの

THE NEW CLAS "G11A" PHOTOPRODUCTION RESULTS

- High-statistics (~ 20 billion triggers), precision (very well calibrated) experiment, originally for pentaquark search.
- Very fine $\Delta(\sqrt{s}) = 10$ MeV binning, wide kinematic coverage, till $\sqrt{s} = 2.84$ GeV
- First world dataset to "bridge" the low-energy regime ($\sqrt{s} \le 2.3 \text{ GeV}$) where most of the world data resides, and the older high-energy ($\sqrt{s} \ge 3 \text{ GeV}$) data from SLAC/DESY/CEA *et al.*
- Generally good to excellent agreement with lower energy LEPS/GRAAL data.
- ...however, normalization discrepancy with the old SLAC/DESY/CEA high-energy data.

Biplab Dey (CMU)

May 17th, 2011 8 / 25

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ● ●

THE FIRST SIGNS...

• Regge-based model fit to SLAC-Boyarski-1969 $E_{\gamma} = 5, 8, 11, 16$ GeV data clearly overshoots 2006 CLAS g1c results.

CLAS "g1c", PRC 73, 035202 (2006):

- 3

∃ ► < ∃ ►</p>

< A >

THE FIRST SIGNS...

• Regge-based model fit to SLAC-Boyarski-1969 $E_{\gamma} = 5, 8, 11, 16$ GeV data clearly overshoots 2006 CLAS g1c results.

• However, this is a projection from a fit, not a direct comparison.

Biplab Dey (CMU)

NSTAR'11, JLab

May 17th, 2011 9 / 25

물 문 문 물 문 문 물

<u>Direct</u> comparison possible with g11a

- With higher energy g11a data, a direct comparison is possible.
- Shown, comparison between, CLAS-2010, LEPS-2006 and CEA-1967 at a particular forward-angle bin.
- Generally, older SLAC/DESY/CEA results are mutually consistent and overshoot CLAS at high-energy, forward-angles.
- CLAS and LEPS are in excellent agreement!

$$\cos\theta_{c.m.}^{K^+} = 0.8$$

May 17th, 2011

Biplab Dey (CMU)

NSTAR'11, JLab

10 / 25

RECENT YU et al WORK

- Yu *et al* (2011): extension of the original GLV (NPA 627, 645 (1997)) Regge model.
- Claim: can reconcile CLAS and SLAC, but tensor-meson (*a*2, *f*2, *K*2) exchanges are *required*.
- Does not include latest CLAS g11a results, only CLAS-2006 (g1c).
- Most of the extra tensor-couplings are model-dependent.

Yu et al. (nucl-th/1104.3672) add $K^*2(1430)$ exchange: $\gamma p \rightarrow K^{+} \Lambda$ 3.0 Pushes Regge-fits towards CLAS $\sigma_{tot}(\mu b)$ E (GeV)

May 17th, 2011 11 / 25

RECENT YU et al WORK

- Yu *et al* (2011): extension of the original GLV (NPA 627, 645 (1997)) Regge model.
- Claim: can reconcile CLAS and SLAC, but tensor-meson (*a*2, *f*2, *K*2) exchanges are *required*.
- Does not include latest CLAS g11a results, only CLAS-2006 (g1c).
- Most of the extra tensor-couplings are model-dependent.

• However, include CLAS-g11a: simply can not fit the SLAC/DESY/CEA and CLAS/LEPS datasets in a single Regge-based fit

Biplab Dey (CMU)

NSTAR'11, JLab

May 17th, 2011 11 / 25

∃ ► < ∃ ►</p>

EFFECT ON COUPLINGS

- Most authors agree on g_{πNN} ≈ 13, but wide uncertainties on the rest of the couplings (g_{ρNN}, κ_{ρNN}, etc.).
- Kaon-sector: $g_{K_{pY}}$, g_{K^*pY} , κ_{K^*pY} even more poorly known.
- In the GLV-model, the $t \to 0$ shape fixes the strength-ratio between the Born π^+ (K^+) and vector ρ (K^*) exchanges for $\pi^+ n$ ($K^+ Y$).

COUPLINGS ...

- Unfortunately, CLAS forward-angle beam-dump hole does not allow $t \rightarrow 0$ measurements.
- We take the SLAC forward-angle shape as "plausible" and take the following as guidance:
 - $K^+\Lambda$ and $K^+\Sigma^0$ should not show a peak at high \sqrt{s} and $t \to 0$.
 - The non-resonant model extrapolated to near-thrshold should not grossly overestimate the CLAS cross-sections.
- Enforcing $|g_{Kp\Lambda}| \leq 10$ seems to satisfy both above conditions.
- This is an extra unwanted ambiguity that remains to be resolved!

OUTLINE

1 INTRODUCTION, "COMPLETE" EXPERIMENTS AND POLARIZATIONS

2 Normalization issues

3 Preliminary PWA results: the non-resonant part

PRELIMINARY PWA RESULTS: THE RESONANT PART

5 SUMMARY

イロト 不得 とうせい かほとう ほ

FORMALISM

- Non-resonant *t* and *u*-channel Reggeized amplitudes mostly follows the Ghent Regge-plus-resonance (RPR) formalism.
- Couple $K^+\Lambda$ and $K^+\Sigma^0$ channels, *eg.* same $g_{Kp\Lambda}$ for the Born terms:

- Channel-coupling leads to much better self-consistency.
- Fit to $\sqrt{s} \geq 2.6~{\rm GeV}$ and $|\cos\theta^K_{c.m.}| > 0.5$ to fix the non-resonant couplings.
- Simple Regge model (no form-factors!): Λ(1115), Σ(1192) exchanges in the *u*-channel, K⁺ and K^{*}(892) exchanges in the *t*-channel

Biplab Dey (CMU)

May 17th, 2011 14 / 25

Non-resonant results

- No local "dips" in the non-resonant regime for *KY*: strongly degenerate Regge trajectories should be a good starting point. Constant or rotating phases.
- Our preliminary couplings with all rotating phases for the trajectories:

	₿КрЛ	g _{Kp} Σ	<i>₿K</i> *pΛ	$\kappa_{K^*p\Lambda}$	<i>ϐ</i> K*pΣ	$\kappa_{K^*p\Sigma}$
GLV	-11.5	4.5	-23	2.5	-25	-1
This work	-9.5	5.6	-14.5	1.7	-14.5	-1.3

• All-rotating is just one possibility. All combinations have to be checked.

- 4 同 6 4 日 6 4 日 6 - 日

Non-resonant results

- No local "dips" in the non-resonant regime for *KY*: strongly degenerate Regge trajectories should be a good starting point. Constant or rotating phases.
- Our preliminary couplings with all rotating phases for the trajectories:

	₿КрЛ	g _{Kp} Σ	<i>₿K</i> *pΛ	$\kappa_{K^*p\Lambda}$	<i>g</i> K*pΣ	$\kappa_{K^*p\Sigma}$
GLV	-11.5	4.5	-23	2.5	-25	-1
This work	-9.5	5.6	-14.5	1.7	-14.5	-1.3

- All-rotating is just one possibility. All combinations have to be checked.
- However, our (CLAS) $g_{Kp\Lambda}$, $g_{Kp\Sigma}$, $g_{K^*p\Lambda}$ and $g_{K^*p\Sigma}$ are definitely going to be smaller than what GLV (SLAC) saw.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ● ●

Non-resonant results: $d\sigma/dt$

From fits to high energy, forward- and backward-angle regime only:

NON-RESONANT RESULTS: RECOIL POLARIZATION

From fits to high energy, forward- and backward-angle regime only:

Non-resonant results: beam asymmetry

From fits to high energy, forward- and backward-angle regime only:

OUTLINE

- 1 INTRODUCTION, "COMPLETE" EXPERIMENTS AND POLARIZATIONS
- 2 Normalization issues
- **3** Preliminary PWA results: the non-resonant part
- PRELIMINARY PWA RESULTS: THE RESONANT PART

5 SUMMARY

イロト 不得 トイヨト イヨト 二日

ADDING *s*-CHANNEL RESONANCES

- The non-resonant part is "fixed" by fits at high energy. Add *s*-channel J^P waves in the resonance regime as in RPR (Ghent group).
- J^P waves constructed using the Rarita-Schwinger covariant formalism, loosely follows Bonn-Gatchina work (Anisovich *et al*)
- For overlapping resonances, Breit-Wigner (propagator) shapes not valid.
- *Mass-indepenent* technique: if the \sqrt{s} -binning is fine enough, the propagator function ($\sim R(\sqrt{s}) \exp(i\phi(\sqrt{s}))$) is approximately a constant *within* a bin.
- Extract the strength $R(\sqrt{s})$ and phase $\phi(\sqrt{s})$ from individual fits in each \sqrt{s} -bin.

▲日 ▶ ▲冊 ▶ ▲ 田 ▶ ▲ 田 ▶ ● ● ● ● ●

Biplab Dey (CMU)

• Select a \sqrt{s} -bin and allow the fit to find the optimal physics for this small energy range

NSTAR'11, JLab

May 17th, 2011

20 / 25

- Select a \sqrt{s} -bin and allow the fit to find the optimal physics for this small energy range
- Repeat this process over the entire energy range all fits are *independent*

- Select a \sqrt{s} -bin and allow the fit to find the optimal physics for this small energy range
- Repeat this process over the entire energy range all fits are *independent*

- Select a \sqrt{s} -bin and allow the fit to find the optimal physics for this small energy range
- Repeat this process over the entire energy range all fits are *independent*

21 / 25

center-of-mass energy

- Select a \sqrt{s} -bin and allow the fit to find the optimal physics for this small energy range
- Repeat this process over the entire energy range all fits are *independent*
- If the data contains resonances, we should be able to extract them without enforcing resonance masses and biasing the result.

22 / 25

Preliminary $K^+\Sigma^0$ single *s*-channel scans

• Non-resonant model plus a single s-channel wave for $K^+\Sigma^0$

• Indication of a $\frac{1}{2}^{-}$ wave at around 2200 MeV.

Biplab Dey (CMU)

$K^+\Sigma^0$ single *s*-channel scans (cntd.)

- Possible $\frac{1}{2}^{-}$ candidate could be S₃₁(2150): one star PDG state also appearing in Capstick/Roberts work with a strong coupling to $K\Sigma$
- Single-channel scans are just the beginning, to get an idea of what the relevant waves might be.
- CLAS $K^+\Sigma^0$ data show broad structure between 2.1 and 2.2 GeV in the backward-angles.
- With more waves, we have seen phase-motion: multiple (overlapping) states present here.

OUTLINE

- 1 INTRODUCTION, "COMPLETE" EXPERIMENTS AND POLARIZATIONS
- 2 Normalization issues
- ³ Preliminary PWA results: the non-resonant part
- PRELIMINARY PWA RESULTS: THE RESONANT PART

- 4 同 6 4 日 6 4 日 6 - 日

SUMMARY AND FURTHER WORK

• Sign issues for polarization observables resolved. FTS *density matrix* expressions will require negative signs for O_x , O_z , G and H.

- 4 同 6 4 日 6 4 日 6 - 日

SUMMARY AND FURTHER WORK

- Sign issues for polarization observables resolved. FTS *density matrix* expressions will require negative signs for O_x , O_z , G and H.
- Normalization discrepancy between CLAS and SLAC datasets remains an outstanding issue that needs to be resolved.

Summary

SUMMARY AND FURTHER WORK

- Sign issues for polarization observables resolved. FTS *density matrix* expressions will require negative signs for O_x , O_z , G and H.
- Normalization discrepancy between CLAS and SLAC datasets remains an outstanding issue that needs to be resolved.
- The Regge-model for non-resonant processes works both at forward-(*t*-) and backward-angles (*u*-channel).

Summary

SUMMARY AND FURTHER WORK

- Sign issues for polarization observables resolved. FTS *density matrix* expressions will require negative signs for O_x , O_z , G and H.
- Normalization discrepancy between CLAS and SLAC datasets remains an outstanding issue that needs to be resolved.
- The Regge-model for non-resonant processes works both at forward-(*t*-) and backward-angles (*u*-channel).
- *Mass-independent* PWA is a powerful technique that reduces model-dependence.

イロト 不得 とうせい かほとう ほ

Summary

SUMMARY AND FURTHER WORK

- Sign issues for polarization observables resolved. FTS *density matrix* expressions will require negative signs for O_x , O_z , G and H.
- Normalization discrepancy between CLAS and SLAC datasets remains an outstanding issue that needs to be resolved.
- The Regge-model for non-resonant processes works both at forward-(*t*-) and backward-angles (*u*-channel).
- *Mass-independent* PWA is a powerful technique that reduces model-dependence.
- This is very much an ongoing work. Detailed studies on the systematics and robustness of our PWA against ambiguities are underway.

SUMMARY AND FURTHER WORK

- Sign issues for polarization observables resolved. FTS *density matrix* expressions will require negative signs for O_x , O_z , G and H.
- Normalization discrepancy between CLAS and SLAC datasets remains an outstanding issue that needs to be resolved.
- The Regge-model for non-resonant processes works both at forward-(*t*-) and backward-angles (*u*-channel).
- *Mass-independent* PWA is a powerful technique that reduces model-dependence.
- This is very much an ongoing work. Detailed studies on the systematics and robustness of our PWA against ambiguities are underway.
- Stay tuned for results!

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・