Partial wave analysis for $K^{+} \Lambda$ and $K^{+} \Sigma^{0}$ photoproduction

Biplab Dey, Michael E. McCracken, Curtis A. Meyer

Carnegie Mellon University

May $17^{\text {th }}, 2011$
NSTAR'11, Jefferson Lab

Outline

(1) Introduction, "COMPlete" experiments and POLARIZATIONS
(2) Normalization issues
(3) Preliminary PWA results: the non-resonant part
(4) Preliminary PWA results: the resonant part
(5) Summary

Outline

(1) Introduction, "COMPlete" experiments and polarizations

(2) Normalization ISSUES

(3) Preliminary PWA results: the non-Resonant part

44 Preliminary PWA Results: the resonant part
(5) SUMMARY

Introduction

- Fundamental question in hadronic physics - what are the relevant degrees of freedom in low/medium energy QCD?

Introduction

- Fundamental question in hadronic physics - what are the relevant degrees of freedom in low/medium energy QCD?
- Can we figure out the complex production amplitudes?

Introduction

- Fundamental question in hadronic physics - what are the relevant degrees of freedom in low/medium energy QCD?
- Can we figure out the complex production amplitudes?

Introduction

- Fundamental question in hadronic physics - what are the relevant degrees of freedom in low/medium energy QCD?
- Can we figure out the complex production amplitudes?

Polarization data, "complete" experiments

PSEUDOSCALAR-MESON PHOTOPRODUCTION

- $8(2 \times 2 \times 2) \mathcal{A}_{m_{\gamma} m_{i} m_{b}}$ complex amplitudes tagged by m_{γ} (photon), m_{i} (initial target) and m_{b} (outgoing baryon) spin projections
- Parity invariance reduces the $8 \mathcal{A}$'s to 4 independent $L_{\text {; }}$ longitudinal basis amplitudes (a single spin-quantization axis along the longitudinal beam direction).

PSEUDOSCALAR-MESON PHOTOPRODUCTION

- $8(2 \times 2 \times 2) \mathcal{A}_{m_{\gamma} m_{i} m_{b}}$ complex amplitudes tagged by m_{γ} (photon), m_{i} (initial target) and m_{b} (outgoing baryon) spin projections
- Parity invariance reduces the $8 \mathcal{A}$'s to 4 independent L_{i} longitudinal basis amplitudes (a single spin-quantization axis along the longitudinal beam direction).
- Density matrix: $\rho=\frac{1}{2}(1+\vec{P} \cdot \vec{\sigma}) \equiv \frac{P^{\mu} \sigma_{\mu}}{2}$, with $P_{0}=1$ and $\sigma_{0}=\mathbb{I}$.
- Intensity profile has $64(4 \times 4 \times 4)$ terms on expansion:

$$
\mathcal{I}=\mathcal{I}_{0}\left(\frac{\operatorname{Tr}\left[\rho^{b} \mathcal{A} \rho^{i} \rho^{\gamma} \mathcal{A}^{\dagger}\right]}{\operatorname{Tr}\left[\mathcal{A} \mathcal{A}^{\dagger}\right] / 8}\right)=\mathcal{I}_{0}\left(\sum_{I m n \in\{0,1,2,3\}} P_{l}^{\gamma} P_{m}^{i} P_{n}^{b} T_{l m n}\right)
$$

The $T_{I m n}$ ELEMENTS AND POLARIZATIONS

- $T_{\text {lmn }} \equiv \frac{\operatorname{Tr}\left[\sigma_{n}^{b} \mathcal{A} \sigma_{m}^{i} \sigma_{I}^{\gamma} \mathcal{A}^{\dagger}\right]}{\operatorname{Tr}\left[\mathcal{A} \mathcal{A}^{\dagger}\right]}$ elements are the polarization observables.
- Parity on $T_{\text {lmn }}$: reshuffle the ordering of (Imn).
- Parity transform: out of 64 terms, 32 get killed and remaining 16 terms occur twice.
- Simply read off $T_{\text {lmn }}$ from the table \rightarrow compactness of notation and derivation!
- 15 independent polarization observables. FROST and g8 from CLAS will give many of these.

The $T_{l m n}$ elements (Imn)

Type	Observable	Definition	Parity flip
Unpolarized	1	(000)	(122)
Single-pol.	P	(002)	(120)
$"$	Σ	(100)	(022)
$"$	T	(020)	(102)
Beam-target	E	(330)	(212)
$"$	F	(310)	$-(232)$
$"$	G	$-(230)$	(312)
$"$	H	$-(210)$	$-(332)$
Beam-recoil	C_{X}	(301)	(223)
$"$	C_{z}	(303)	$-(221)$
$"$	O_{X}	$-(201)$	(323)
$"$	O_{z}	$-(203)$	$-(321)$
Target-recoil	T_{X}	(011)	(133)
$"$	T_{z}	(013)	$-(131)$
$"$	L_{x}	(031)	$-(113)$
$"$	L_{z}	(033)	(111)

Sign issues - I

- Photon polarization \vec{P}^{γ} :

$$
\begin{aligned}
P_{z}^{\gamma} & =P_{C}^{\gamma}(\text { circular }) \\
P_{x}^{\gamma} & =-P_{L}^{\gamma} \cos (2 \phi)(\text { linear }) \\
P_{y}^{\gamma} & =-P_{L}^{\gamma} \sin (2 \phi)(\text { linear })
\end{aligned}
$$

- Linear case: $\phi=(\theta-\varphi)$
- Theory/PWA: ϕ
- Experimentalists:
- $\theta=0$ "para" and $\theta=90^{\circ}$ "perp" settings.

Looking "into" the beam-dirn. (̂):

- While showing intensity profile, clarify whether azimuthal angle is ϕ or φ.
- Intensity profile for "para" / "perp" will carry totally different signs. Can lead to sign ambiguities.

Sign issues - II

- CMU follows the asymmetry definitions in Fasano-Tabakin-Saghai (FTS) PRC 46, 2430 (1992).
- Caveat: FTS density matrix definitions for O_{x}, O_{z}, G and H (linear pol. photon) have incorrect signs.
- CMU \leftrightarrow SAID/MAID : flip signs of $H, E, C_{x}, C_{z}, O_{x}, O_{z}$ and L_{x}.
- CMU \leftrightarrow EBAC : flip signs of E.
- To avoid sign issues, need to mention:
- Which convention (CMU/SAID/EBAC) is being followed.
- Which angle, ϕ or φ, is being shown in the intensity profile.

Sign issues - II

- CMU follows the asymmetry definitions in Fasano-Tabakin-Saghai (FTS) PRC 46, 2430 (1992).
- Caveat: FTS density matrix definitions for O_{x}, O_{z}, G and H (linear pol. photon) have incorrect signs.
- CMU \leftrightarrow SAID/MAID : flip signs of $H, E, C_{x}, C_{z}, O_{x}, O_{z}$ and L_{x}.
- CMU \leftrightarrow EBAC : flip signs of E.
- To avoid sign issues, need to mention:
- Which convention (CMU/SAID/EBAC) is being followed.
- Which angle, ϕ or φ, is being shown in the intensity profile.

Ref: B. Dey et al, arXiv:1010.4978 [hep-ph] (to be published in PRC)

Outline

(1) Introduction, "COMPLETE" EXPERIMENTS AND POLARIZATIONS

(2) Normalization ISSUES
(3) Preliminary PWA results: the non-RESONANT Part

44 Preliminary PWA results: the resonant part

(5) Summary

The new CLAS "G11A" Photoproduction RESULTS

- High-statistics (~ 20 billion triggers), precision (very well calibrated) experiment, originally for pentaquark search.
- Very fine $\Delta(\sqrt{s})=10 \mathrm{MeV}$ binning, wide kinematic coverage, till $\sqrt{s}=2.84 \mathrm{GeV}$
- First world dataset to "bridge" the low-energy regime ($\sqrt{s} \leq 2.3 \mathrm{GeV}$) where most of the world data resides, and the older high-energy ($\sqrt{s} \geq 3 \mathrm{GeV}$) data from SLAC/DESY/CEA et al.
- Generally good to excellent agreement with lower energy LEPS/GRAAL data.

The new CLAS "G11A" Photoproduction RESULTS

- High-statistics (~ 20 billion triggers), precision (very well calibrated) experiment, originally for pentaquark search.
- Very fine $\Delta(\sqrt{s})=10 \mathrm{MeV}$ binning, wide kinematic coverage, till $\sqrt{s}=2.84 \mathrm{GeV}$
- First world dataset to "bridge" the low-energy regime ($\sqrt{s} \leq 2.3 \mathrm{GeV}$) where most of the world data resides, and the older high-energy ($\sqrt{s} \geq 3 \mathrm{GeV}$) data from SLAC/DESY/CEA et al.
- Generally good to excellent agreement with lower energy LEPS/GRAAL data.
- ...however, normalization discrepancy with the old SLAC/DESY/CEA high-energy data.

The first signs...

- Regge-based model fit to SLAC-Boyarski-1969 $E_{\gamma}=5,8,11,16 \mathrm{GeV}$ data clearly overshoots 2006 CLAS g1c results.

CLAS "g1c", PRC 73, 035202 (2006):

The first signs...

- Regge-based model fit to SLAC-Boyarski-1969 $E_{\gamma}=5,8,11,16 \mathrm{GeV}$ data clearly overshoots 2006 CLAS g1c results.

CLAS "g1c", PRC 73, 035202 (2006):

- However, this is a projection from a fit, not a direct comparison.

Direct comparison possible with gila

- With higher energy g11a data, a direct comparison is possible.
- Shown, comparison between, CLAS-2010, LEPS-2006 and CEA-1967 at a particular forward-angle bin.
- Generally, older SLAC/DESY/CEA results are mutually consistent and overshoot CLAS at high-energy, forward-angles.
- CLAS and LEPS are in excellent agreement!

Recent Yu et al work

- Yu et al (2011): extension of the original GLV (NPA 627, 645 (1997)) Regge model.
- Claim: can reconcile CLAS and SLAC, but tensor-meson ($a 2, f 2$, K2) exchanges are required.
- Does not include latest CLAS g11a results, only CLAS-2006 (g1c).
- Most of the extra tensor-couplings are model-dependent.

Yu et al. (nucl-th/1104.3672) add $K^{*} 2(1430)$ exchange:

Recent Yu et al work

- Yu et al (2011): extension of the original GLV (NPA 627, 645 (1997)) Regge model.
- Claim: can reconcile CLAS and SLAC, but tensor-meson (a2, f2, K2) exchanges are required.
- Does not include latest CLAS g11a results, only CLAS-2006 (g1c).
- Most of the extra tensor-couplings are model-dependent.
- However, include CLAS-g11a: simply can not fit the SLAC/DESY/CEA and CLAS/LEPS datasets in a single Regge-based fit

Effect on couplings

- Most authors agree on $g_{\pi N N} \approx 13$, but wide uncertainties on the rest of the couplings ($g_{\rho N N}, \kappa_{\rho N N}$, etc.).
- Kaon-sector: $g_{K p Y}, g_{K^{*} p Y}, \kappa_{K^{*} p Y}$ even more poorly known.
- In the GLV-model, the $t \rightarrow 0$ shape fixes the strength-ratio between the Born $\pi^{+}\left(K^{+}\right)$and vector $\rho\left(K^{*}\right)$ exchanges for $\pi^{+} n\left(K^{+} Y\right)$.

At $t \rightarrow 0$:

- Rise for $\pi^{+} n$
- Plateau for $K^{+} \Lambda$
- Drop-off for $K^{+} \Sigma^{0}$

Couplings ...

- Unfortunately, CLAS forward-angle beam-dump hole does not allow $t \rightarrow 0$ measurements.
- We take the SLAC forward-angle shape as "plausible" and take the following as guidance:
- $K^{+} \Lambda$ and $K^{+} \Sigma^{0}$ should not show a peak at high \sqrt{s} and $t \rightarrow 0$.
- The non-resonant model extrapolated to near-thrshold should not grossly overestimate the CLAS cross-sections.
- Enforcing $\left|g_{K p \wedge}\right| \leq 10$ seems to satisfy both above conditions.
- This is an extra unwanted ambiguity that remains to be resolved!

Outline

(1) Introduction, "complete" experiments and POLARIZATIONS

(2) Normalization ISSUES

(3) Preliminary PWA results: the non-resonant part
(4) Preliminary PWA results: the resonant part

(3) Summary

Formalism

- Non-resonant t - and u-channel Reggeized amplitudes mostly follows the Ghent Regge-plus-resonance (RPR) formalism.
- Couple $K^{+} \Lambda$ and $K^{+} \Sigma^{0}$ channels, eg. same $g_{K p \Lambda}$ for the Born terms:

- Channel-coupling leads to much better self-consistency.
- Fit to $\sqrt{s} \geq 2.6 \mathrm{GeV}$ and $\left|\cos \theta_{\text {c.m. }}^{K}\right|>0.5$ to fix the non-resonant couplings.
- Simple Regge model (no form-factors!): $\Lambda(1115), \Sigma(1192)$ exchanges in the u-channel, K^{+}and $K^{*}(892)$ exchanges in the t-channel

Non-RESONANT RESULTS

- No local "dips" in the non-resonant regime for $K Y$: strongly degenerate Regge trajectories should be a good starting point. Constant or rotating phases.
- Our preliminary couplings with all rotating phases for the trajectories:

	$g_{K p \Lambda}$	$g_{K p \Sigma}$	$g_{K^{*} p \Lambda}$	$\kappa_{K^{*} p \Lambda}$	$g_{K^{*} p \Sigma}$	$\kappa_{K^{*} p \Sigma}$
GLV	-11.5	4.5	-23	2.5	-25	-1
This work	-9.5	5.6	-14.5	1.7	-14.5	-1.3

- All-rotating is just one possibility. All combinations have to be checked.

Non-RESONANT RESULTS

- No local "dips" in the non-resonant regime for $K Y$: strongly degenerate Regge trajectories should be a good starting point. Constant or rotating phases.
- Our preliminary couplings with all rotating phases for the trajectories:

	$g_{K p \Lambda}$	$g_{K p \Sigma}$	$g_{K^{*} p \Lambda}$	$\kappa_{K^{*} p \Lambda}$	$g_{K^{*} p \Sigma}$	$\kappa_{K^{*} p \Sigma}$
GLV	-11.5	4.5	-23	2.5	-25	-1
This work	-9.5	5.6	-14.5	1.7	-14.5	-1.3

- All-rotating is just one possibility. All combinations have to be checked.
- However, our (CLAS) $g_{K p \wedge}, g_{K p \Sigma}, g_{K^{*} p \Lambda}$ and $g_{K^{*} p \Sigma}$ are definitely going to be smaller than what GLV (SLAC) saw.

NON-RESONANT RESULTS: $d \sigma / d t$

From fits to high energy, forward- and backward-angle regime only:

Non-RESONANT RESULTS: RECOIL POLARIZATION

From fits to high energy, forward- and backward-angle regime only:

Non-RESONANT RESULTS: BEAM ASYMMETRY

From fits to high energy, forward- and backward-angle regime only:

Outline

(1) Introduction, "COMPLETE" EXPERIMENTS AND POLARIZATIONS

(2) Normalization ISSUES

(3) Preliminary PWA Results: the non-Resonant part
(4) Preliminary PWA results: the resonant part

(5) Summary

Adding s-CHANNEL RESONANCES

- The non-resonant part is "fixed" by fits at high energy. Add s-channel J^{P} waves in the resonance regime as in RPR (Ghent group).
- J^{P} waves constructed using the Rarita-Schwinger covariant formalism, loosely follows Bonn-Gatchina work (Anisovich et al)
- For overlapping resonances, Breit-Wigner (propagator) shapes not valid.
- Mass-indepenent technique: if the \sqrt{s}-binning is fine enough, the propagator function $(\sim R(\sqrt{s}) \exp (i \phi(\sqrt{s}))$ is approximately a constant within a bin.
- Extract the strength $R(\sqrt{s})$ and phase $\phi(\sqrt{s})$ from individual fits in each \sqrt{s}-bin.

Mass-Independent PWA Method (Toy-example)

- Select a \sqrt{s}-bin and allow the fit to find the optimal physics for this small energy range

Mass-Independent PWA Method (Toy-example)

center-of-mass energy

- Select a \sqrt{s}-bin and allow the fit to find the optimal physics for this small energy range
- Repeat this process over the entire energy range - all fits are independent
-

Mass-Independent PWA Method (Toy-example)

center-of-mass energy

- Select a \sqrt{s}-bin and allow the fit to find the optimal physics for this small energy range
- Repeat this process over the entire energy range - all fits are independent
-

Mass-Independent PWA Method (Toy-example)

center-of-mass energy

- Select a \sqrt{s}-bin and allow the fit to find the optimal physics for this small energy range
- Repeat this process over the entire energy range - all fits are independent
-

Mass-Independent PWA Method (Toy-example)

center-of-mass energy

- Select a \sqrt{s}-bin and allow the fit to find the optimal physics for this small energy range
- Repeat this process over the entire energy range - all fits are independent
- If the data contains resonances, we should be able to extract them without enforcing resonance masses and biasing the result.

PRELIMINARY $K^{+} \Sigma^{0}$ SINGLE s-CHANNEL SCANS

- Non-resonant model plus a single s-channel wave for $K^{+} \Sigma^{0}$

- Indication of a $\frac{1}{2}^{-}$wave at around 2200 MeV .

$K^{+} \Sigma^{0}$ SINGLE s-CHANNEL SCANS (CNTD.)

- Possible $\frac{1}{2}^{-}$candidate could be $S_{31}(2150)$: one star PDG state also appearing in Capstick/Roberts work with a strong coupling to $K \Sigma$
- Single-channel scans are just the beginning, to get an idea of what the relevant waves might be.
- CLAS $K^{+} \Sigma^{0}$ data show broad structure between 2.1 and 2.2 GeV in the backward-angles.
- With more waves, we have seen phase-motion: multiple (overlapping) states present here.

Outline

(1) Introduction, "COMPLETE" EXPERIMENTS AND POLARIZATIONS

(2) Normalization ISSUES

(3) Preliminary PWA results: the non-Resonant part

44 Preliminary PWA results: the resonant part
(5) Summary

Summary and further work

- Sign issues for polarization observables resolved. FTS density matrix expressions will require negative signs for O_{x}, O_{z}, G and H.

Summary and further work

- Sign issues for polarization observables resolved. FTS density matrix expressions will require negative signs for O_{x}, O_{z}, G and H.
- Normalization discrepancy between CLAS and SLAC datasets remains an outstanding issue that needs to be resolved.

Summary and further work

- Sign issues for polarization observables resolved. FTS density matrix expressions will require negative signs for O_{x}, O_{z}, G and H.
- Normalization discrepancy between CLAS and SLAC datasets remains an outstanding issue that needs to be resolved.
- The Regge-model for non-resonant processes works both at forward(t-) and backward-angles (u-channel).

Summary and further work

- Sign issues for polarization observables resolved. FTS density matrix expressions will require negative signs for O_{x}, O_{z}, G and H.
- Normalization discrepancy between CLAS and SLAC datasets remains an outstanding issue that needs to be resolved.
- The Regge-model for non-resonant processes works both at forward(t-) and backward-angles (u-channel).
- Mass-independent PWA is a powerful technique that reduces model-dependence.

Summary and further work

- Sign issues for polarization observables resolved. FTS density matrix expressions will require negative signs for O_{x}, O_{z}, G and H.
- Normalization discrepancy between CLAS and SLAC datasets remains an outstanding issue that needs to be resolved.
- The Regge-model for non-resonant processes works both at forward(t-) and backward-angles (u-channel).
- Mass-independent PWA is a powerful technique that reduces model-dependence.
- This is very much an ongoing work. Detailed studies on the systematics and robustness of our PWA against ambiguities are underway.

Summary and further work

- Sign issues for polarization observables resolved. FTS density matrix expressions will require negative signs for O_{x}, O_{z}, G and H.
- Normalization discrepancy between CLAS and SLAC datasets remains an outstanding issue that needs to be resolved.
- The Regge-model for non-resonant processes works both at forward(t-) and backward-angles (u-channel).
- Mass-independent PWA is a powerful technique that reduces model-dependence.
- This is very much an ongoing work. Detailed studies on the systematics and robustness of our PWA against ambiguities are underway.
- Stay tuned for results!

